Machine Learning

Symmetric Variational Autoencoder and Connections to Adversarial Learning

Tagged: , ,

This topic contains 0 replies, has 1 voice, and was last updated by  arXiv 1 year, 4 months ago.


  • arXiv
    5 pts

    Symmetric Variational Autoencoder and Connections to Adversarial Learning

    A new form of the variational autoencoder (VAE) is proposed, based on the symmetric Kullback-Leibler divergence. It is demonstrated that learning of the resulting symmetric VAE (sVAE) has close connections to previously developed adversarial-learning methods. This relationship helps unify the previously distinct techniques of VAE and adversarially learning, and provides insights that allow us to ameliorate shortcomings with some previously developed adversarial methods. In addition to an analysis that motivates and explains the sVAE, an extensive set of experiments validate the utility of the approach.

    Symmetric Variational Autoencoder and Connections to Adversarial Learning
    by Yunchen Pu, Liqun Chen, Shuyang Dai, Weiyao Wang, Chunyuan Li, Lawrence Carin
    https://arxiv.org/pdf/1709.01846v1.pdf

You must be logged in to reply to this topic.