Machine Learning

Safe Medicine Recommendation via Medical Knowledge Graph Embedding

Tagged: ,

This topic contains 0 replies, has 1 voice, and was last updated by  arXiv 1 year, 9 months ago.


  • arXiv
    5 pts

    Safe Medicine Recommendation via Medical Knowledge Graph Embedding

    Most of the existing medicine recommendation systems that are mainly based on electronic medical records (EMRs) are significantly assisting doctors to make better clinical decisions benefiting both patients and caregivers. Even though the growth of EMRs is at a lighting fast speed in the era of big data, content limitations in EMRs restrain the existed recommendation systems to reflect relevant medical facts, such as drug-drug interactions. Many medical knowledge graphs that contain drug-related information, such as DrugBank, may give hope for the recommendation systems. However, the direct use of these knowledge graphs in the systems suffers from robustness caused by the incompleteness of the graphs. To address these challenges, we stand on recent advances in graph embedding learning techniques and propose a novel framework, called Safe Medicine Recommendation (SMR), in this paper. Specifically, SMR first constructs a high-quality heterogeneous graph by bridging EMRs (MIMIC-III) and medical knowledge graphs (ICD-9 ontology and DrugBank). Then, SMR jointly embeds diseases, medicines, patients, and their corresponding relations into a shared lower dimensional space. Finally, SMR uses the embeddings to decompose the medicine recommendation into a link prediction process while considering the patient’s diagnoses and adverse drug reactions. To our best knowledge, SMR is the first to learn embeddings of a patient-disease-medicine graph for medicine recommendation in the world. Extensive experiments on real datasets are conducted to evaluate the effectiveness of proposed framework.

    Safe Medicine Recommendation via Medical Knowledge Graph Embedding
    by Meng Wang, Mengyue Liu, Jun Liu, Sen Wang, Guodong Long, Buyue Qian
    https://arxiv.org/pdf/1710.05980v1.pdf

You must be logged in to reply to this topic.