Machine Learning

Human motion primitive discovery and recognition

Tagged: , ,

This topic contains 0 replies, has 1 voice, and was last updated by  arXiv 1 year, 5 months ago.

  • arXiv
    5 pts

    Human motion primitive discovery and recognition

    We present a novel framework for the automatic discovery and recognition of human motion primitives from motion capture data. Human motion primitives are discovered by optimizing the ‘motion flux’, a quantity which depends on the motion of a group of skeletal joints. Models of each primitive category are computed via non-parametric Bayes methods and recognition is performed based on their geometric properties. A normalization of the primitives is proposed in order to make them invariant with respect to anatomical variations and data sampling rate. Using our framework we build a publicly available dataset of human motion primitives based on motion capture sequences taken from well-known datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields related to Robotics including human inspired motion generation, learning by demonstration, and intuitive human-robot interaction.

    Human motion primitive discovery and recognition
    by Marta Sanzari, Valsamis Ntouskos, Simone Grazioso, Francesco Puja, Fiora Pirri

You must be logged in to reply to this topic.