Machine Learning

Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks

Tagged: , ,

This topic contains 0 replies, has 1 voice, and was last updated by  arXiv 1 year, 5 months ago.


  • arXiv
    5 pts

    Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks

    With tens of thousands of electrocardiogram (ECG) records processed by mobile cardiac event recorders every day, heart rhythm classification algorithms are an important tool for the continuous monitoring of patients at risk. We utilise an annotated dataset of 12,186 single-lead ECG recordings to build a diverse ensemble of recurrent neural networks (RNNs) that is able to distinguish between normal sinus rhythms, atrial fibrillation, other types of arrhythmia and signals that are too noisy to interpret. In order to ease learning over the temporal dimension, we introduce a novel task formulation that harnesses the natural segmentation of ECG signals into heartbeats to drastically reduce the number of time steps per sequence. Additionally, we extend our RNNs with an attention mechanism that enables us to reason about which heartbeats our RNNs focus on to make their decisions. Through the use of attention, our model maintains a high degree of interpretability, while also achieving state-of-the-art classification performance with an average F1 score of 0.79 on an unseen test set (n=3,658).

    Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks
    by Patrick Schwab, Gaetano Scebba, Jia Zhang, Marco Delai, Walter Karlen
    https://arxiv.org/pdf/1710.06319v1.pdf

You must be logged in to reply to this topic.