Topic Tag: SVM

home Forums Topic Tag: SVM

 Enhancing Transparency of Black-box Soft-margin SVM by Integrating Data-based Prior Information

The lack of transparency often makes the black-box models difficult to be applied to many practical domains. For this reason, the current work, from the black-box model input port, proposes to incorporate data-based prior information into the black-box soft-margin SVM model to enhance its transpare…


 Performance Prediction and Optimization of Solar Water Heater via a Knowledge-Based Machine Learning Method

 

Measuring the performance of solar energy and heat transfer systems requires a lot of time, economic cost and manpower. Meanwhile, directly predicting their performance is challenging due to the complicated internal structures. Fortunately, a knowledge-based machine learning method can provide a pr…


 Learning rates for classification with Gaussian kernels

 

This paper aims at refined error analysis for binary classification using support vector machine (SVM) with Gaussian kernel and convex loss. Our first result shows that for some loss functions such as the truncated quadratic loss and quadratic loss, SVM with Gaussian kernel can reach the almost opt…


 Ensemble Classifier for Eye State Classification using EEG Signals

 

The growing importance and utilization of measuring brain waves (e.g. EEG signals of eye state) in brain-computer interface (BCI) applications highlighted the need for suitable classification methods. In this paper, a comparison between three of well-known classification methods (i.e. support vecto…


 Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning

  

In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These metho…


 Depression Scale Recognition from Audio, Visual and Text Analysis

      

Depression is a major mental health disorder that is rapidly affecting lives worldwide. Depression not only impacts emotional but also physical and psychological state of the person. Its symptoms include lack of interest in daily activities, feeling low, anxiety, frustration, loss of weight and eve…


 A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data

     

Gated Recurrent Unit (GRU) is a recently published variant of the Long Short-Term Memory (LSTM) network, designed to solve the vanishing gradient and exploding gradient problems. However, its main objective is to solve the long-term dependency problem in Recurrent Neural Networks (RNNs), which prev…


 Source localization in an ocean waveguide using supervised machine learning

 

Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix (SCM) and used …


 Pillar Networks++: Distributed non-parametric deep and wide networks

     

In recent work, it was shown that combining multi-kernel based support vector machines (SVMs) can lead to near state-of-the-art performance on an action recognition dataset (HMDB-51 dataset). This was 0.4% lower than frameworks that used hand-crafted features in addition to the deep convolutional f…