Topic Tag: game

home Forums Topic Tag: game

 Cooperating with Machines

 

Since Alan Turing envisioned Artificial Intelligence (AI) [1], a major driving force behind technical progress has been competition with human cognition. Historical milestones have been frequently associated with computers matching or outperforming humans in difficult cognitive tasks (e.g. face rec…


 Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear

  

To use deep reinforcement learning in the wild, we might hope for an agent that can avoid catastrophic mistakes. Unfortunately, even in simple environments, the popular deep Q-network (DQN) algorithm is doomed by a Sisyphean curse. Owing to the use of function approximation, these agents may eventu…


 Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear

  

To use deep reinforcement learning in the wild, we might hope for an agent that can avoid catastrophic mistakes. Unfortunately, even in simple environments, the popular deep Q-network (DQN) algorithm is doomed by a Sisyphean curse. Owing to the use of function approximation, these agents may eventu…


 Combating Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear

  

To use deep reinforcement learning in the wild, we might hope for an agent that can avoid catastrophic mistakes. Unfortunately, even in simple environments, the popular deep Q-network (DQN) algorithm is doomed by a Sisyphean curse. Owing to the use of function approximation, these agents may eventu…


 Correlated Equilibria for Approximate Variational Inference in MRFs

 

Almost all of the work in graphical models for game theory has mirrored previous work in probabilistic graphical models. Our work considers the opposite direction: Taking advantage of recent advances in equilibrium computation for probabilistic inference. We present formulations of inference proble…


 Rainbow: Combining Improvements in Deep Reinforcement Learning

  

The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combinat…


 Multi-Level Discovery of Deep Options

  

Augmenting an agent’s control with useful higher-level behaviors called options can greatly reduce the sample complexity of reinforcement learning, but manually designing options is infeasible in high-dimensional and abstract state spaces. While recent work has proposed several techniques for…


 Feasibility Study: Moving Non-Homogeneous Teams in Congested Video Game Environments

 

Multi-agent path finding (MAPF) is a well-studied problem in artificial intelligence, where one needs to find collision-free paths for agents with given start and goal locations. In video games, agents of different types often form teams. In this paper, we demonstrate the usefulness of MAPF algorit…


 Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight

 

Deep reinforcement learning has shown promising results in learning control policies for complex sequential decision-making tasks. However, these neural network-based policies are known to be vulnerable to adversarial examples. This vulnerability poses a potentially serious threat to safety-critica…


 Deep Abstract Q-Networks

  

We examine the problem of learning and planning on high-dimensional domains with long horizons and sparse rewards. Recent approaches have shown great successes in many Atari 2600 domains. However, domains with long horizons and sparse rewards, such as Montezuma’s Revenge and Venture, remain c…


 Optimal Distributed Control of Multi-agent Systems in Contested Environments via Reinforcement Learning

 

This paper presents a model-free reinforcement learning (RL) based distributed control protocol for leader-follower multi-agent systems. Although RL has been successfully used to learn optimal control protocols for multi-agent systems, the effects of adversarial inputs are ignored. It is shown in t…


 Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces

  

While recent advances in deep reinforcement learning have allowed autonomous learning agents to succeed at a variety of complex tasks, existing algorithms generally require a lot of training data. One way to increase the speed at which agents are able to learn to perform tasks is by leveraging the …


 Research on several key technologies in practical speech emotion recognition

  

In this dissertation the practical speech emotion recognition technology is studied, including several cognitive related emotion types, namely fidgetiness, confidence and tiredness. The high quality of naturalistic emotional speech data is the basis of this research. The following techniques are us…


 Learning Unmanned Aerial Vehicle Control for Autonomous Target Following

    

While deep reinforcement learning (RL) methods have achieved unprecedented successes in a range of challenging problems, their applicability has been mainly limited to simulation or game domains due to the high sample complexity of the trial-and-error learning process. However, real-world robotic a…


 Symbolic LTLf Synthesis

LTLf synthesis is the process of finding a strategy that satisfies a linear temporal specification over finite traces. An existing solution to this problem relies on a reduction to a DFA game. In this paper, we propose a symbolic framework for LTLf synthesis based on this technique, by performing t…


 Behavior Trees in Robotics and AI: An Introduction

A Behavior Tree (BT) is a way to structure the switching between different tasks in an autonomous agent, such as a robot or a virtual entity in a computer game. BTs are a very efficient way of creating complex systems that are both modular and reactive. These properties are crucial in many applicat…


 Cost Adaptation for Robust Decentralized Swarm Behaviour

The multi-agent swarm system is a robust paradigm which can drive efficient completion of complex tasks even under energy limitations and time constraints. However, coordination of a swarm from a centralized command center can be difficult, particularly as the swarm becomes large and spans wide ran…


 Learning to Design Games: Strategic Environments in Deep Reinforcement Learning

  

In typical reinforcement learning (RL), the environment is assumed given and the goal of the learning is to identify an optimal policy for the agent taking actions through its interactions with the environment. In this paper, we extend this setting by considering the environment is not given, but c…


 Multi-Generator Generative Adversarial Nets

  

We propose in this paper a novel approach to address the mode collapse problem in Generative Adversarial Nets (GANs) by training many generators. The training procedure is formulated as a minimax game among many generators, a classifier, and a discriminator. Generators produce data to fool the disc…


 Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

  

In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible t…


 Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents

 

The Arcade Learning Environment (ALE) is an evaluation platform that poses the challenge of building AI agents with general competency across dozens of Atari 2600 games. It supports a variety of different problem settings and it has been receiving increasing attention from the scientific community,…


 The Uncertainty Bellman Equation and Exploration

  

We consider the exploration/exploitation problem in reinforcement learning. For exploitation, it is well known that the Bellman equation connects the value at any time-step to the expected value at subsequent time-steps. In this paper we consider a similar uncertainty Bellman equation (UBE), which …


 Dynamic Pricing in Competitive Markets

 

Dynamic pricing of goods in a competitive environment to maximize revenue is a natural objective and has been a subject of research over the years. In this paper, we focus on a class of markets exhibiting the substitutes property with sellers having divisible and replenishable goods. Depending on t…


 Shared Learning : Enhancing Reinforcement in Q-Ensembles

  

Deep Reinforcement Learning has been able to achieve amazing successes in a variety of domains from video games to continuous control by trying to maximize the cumulative reward. However, most of these successes rely on algorithms that require a large amount of data to train in order to obtain resu…


 Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games

Many artificial intelligence (AI) applications often require multiple intelligent agents to work in a collaborative effort. Efficient learning for intra-agent communication and coordination is an indispensable step towards general AI. In this paper, we take StarCraft combat game as a case study, wh…