Topic Tag: Convolutional Neural Network

home Forums Topic Tag: Convolutional Neural Network

 Classification Driven Dynamic Image Enhancement

 

Convolutional neural networks rely on image texture and structure to serve as discriminative features to classify the image content. Image enhancement techniques can be used as preprocessing steps to help improve the overall image quality and in turn improve the overall effectiveness of a CNN. Exis…


 HDR image reconstruction from a single exposure using deep CNNs

  

Camera sensors can only capture a limited range of luminance simultaneously, and in order to create high dynamic range (HDR) images a set of different exposures are typically combined. In this paper we address the problem of predicting information that have been lost in saturated image areas, in or…


 Unified Backpropagation for Multi-Objective Deep Learning

  

A common practice in most of deep convolutional neural architectures is to employ fully-connected layers followed by Softmax activation to minimize cross-entropy loss for the sake of classification. Recent studies show that substitution or addition of the Softmax objective to the cost functions of …


 Multipartite Pooling for Deep Convolutional Neural Networks

We propose a novel pooling strategy that learns how to adaptively rank deep convolutional features for selecting more informative representations. To this end, we exploit discriminative analysis to project the features onto a space spanned by the number of classes in the dataset under study. This m…


 Graph Convolution: A High-Order and Adaptive Approach

In this paper, we presented a novel convolutional neural network framework for graph modeling, with the introduction of two new modules specially designed for graph-structured data: the $k$-th order convolution operator and the adaptive filtering module. Importantly, our framework of High-order and…


 Ligand Pose Optimization with Atomic Grid-Based Convolutional Neural Networks

Docking is an important tool in computational drug discovery that aims to predict the binding pose of a ligand to a target protein through a combination of pose scoring and optimization. A scoring function that is differentiable with respect to atom positions can be used for both scoring and gradie…


 Building effective deep neural network architectures one feature at a time

 

Successful training of convolutional neural networks is often associated with sufficiently deep architectures composed of high amounts of features. These networks typically rely on a variety of regularization and pruning techniques to converge to less redundant states. We introduce a novel bottom-u…


 Recent Advances in Convolutional Neural Networks

    

In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging…


 DNN and CNN with Weighted and Multi-task Loss Functions for Audio Event Detection

  

This report presents our audio event detection system submitted for Task 2, “Detection of rare sound events”, of DCASE 2017 challenge. The proposed system is based on convolutional neural networks (CNNs) and deep neural networks (DNNs) coupled with novel weighted and multi-task loss fun…


 Query-based Attention CNN for Text Similarity Map

 

In this paper, we introduce Query-based Attention CNN(QACNN) for Text Similarity Map, an end-to-end neural network for question answering. This network is composed of compare mechanism, two-staged CNN architecture with attention mechanism, and a prediction layer. First, the compare mechanism compar…


 Low-shot learning with large-scale diffusion

 

This paper considers the problem of inferring image labels for which only a few labelled examples are available at training time. This setup is often referred to as low-shot learning in the literature, where a standard approach is to re-train the last few layers of a convolutional neural network le…


 Reply With: Proactive Recommendation of Email Attachments

Email responses often contain items-such as a file or a hyperlink to an external document-that are attached to or included inline in the body of the message. Analysis of an enterprise email corpus reveals that 35% of the time when users include these items as part of their response, the attachable …


 A systematic study of the class imbalance problem in convolutional neural networks

    

In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine l…


 An Effective Training Method For Deep Convolutional Neural Network

 

In this paper, we propose the nonlinearity generation method to speed up and stabilize the training of deep convolutional neural networks. The proposed method modifies a family of activation functions as nonlinearity generators (NGs). NGs make the activation functions linear symmetric for their inp…


 Checkpoint Ensembles: Ensemble Methods from a Single Training Process

   

We present the checkpoint ensembles method that can learn ensemble models on a single training process. Although checkpoint ensembles can be applied to any parametric iterative learning technique, here we focus on neural networks. Neural networks’ composable and simple neurons make it possibl…


 Protein identification with deep learning: from abc to xyz

    

Proteins are the main workhorses of biological functions in a cell, a tissue, or an organism. Identification and quantification of proteins in a given sample, e.g. a cell type under normal/disease conditions, are fundamental tasks for the understanding of human health and disease. In this paper, we…


 Projection Based Weight Normalization for Deep Neural Networks

      

Optimizing deep neural networks (DNNs) often suffers from the ill-conditioned problem. We observe that the scaling-based weight space symmetry property in rectified nonlinear network will cause this negative effect. Therefore, we propose to constrain the incoming weights of each neuron to be unit-n…


 Deep Convolutional Neural Networks as Generic Feature Extractors

 

Recognizing objects in natural images is an intricate problem involving multiple conflicting objectives. Deep convolutional neural networks, trained on large datasets, achieve convincing results and are currently the state-of-the-art approach for this task. However, the long time needed to train su…


 How Much Chemistry Does a Deep Neural Network Need to Know to Make Accurate Predictions?

  

In the last few years, we have seen the rise of deep learning applications in a broad range of chemistry research problems. Recently, we reported on the development of Chemception, a deep convolutional neural network (CNN) architecture for general-purpose small molecule property prediction. In this…


 Towards lightweight convolutional neural networks for object detection

 

We propose model with larger spatial size of feature maps and evaluate it on object detection task. With the goal to choose the best feature extraction network for our model we compare several popular lightweight networks. After that we conduct a set of experiments with channels reduction algorithm…


 Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics

 

Deep learning methods are used on spectroscopic data to predict drug content in tablets from near infrared (NIR) spectra. Using convolutional neural networks (CNNs), features are ex- tracted from the spectroscopic data. Extended multiplicative scatter correction (EMSC) and a novel spectral data aug…


 To prune, or not to prune: exploring the efficacy of pruning for model compression

   

Model pruning seeks to induce sparsity in a deep neural network’s various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and …


 Learning Affinity via Spatial Propagation Networks

  

In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relatio…


 Facial Key Points Detection using Deep Convolutional Neural Network – NaimishNet

 

Facial Key Points (FKPs) Detection is an important and challenging problem in the fields of computer vision and machine learning. It involves predicting the co-ordinates of the FKPs, e.g. nose tip, center of eyes, etc, for a given face. In this paper, we propose a LeNet adapted Deep CNN model ̵…


 Backprop KF: Learning Discriminative Deterministic State Estimators

   

Generative state estimators based on probabilistic filters and smoothers are one of the most popular classes of state estimators for robots and autonomous vehicles. However, generative models have limited capacity to handle rich sensory observations, such as camera images, since they must model the…